1,549 research outputs found

    Coulomb gauge confinement in the heavy quark limit

    Full text link
    The relationship between the nonperturbative Green's functions of Yang-Mills theory and the confinement potential is investigated. By rewriting the generating functional of quantum chromodynamics in terms of a heavy quark mass expansion in Coulomb gauge, restricting to leading order in this expansion and considering only the two-point functions of the Yang-Mills sector, the rainbow-ladder approximation to the gap and Bethe-Salpeter equations is shown to be exact in this case and an analytic, nonperturbative solution is presented. It is found that there is a direct connection between the string tension and the temporal gluon propagator. Further, it is shown that for the 4-point quark correlation functions, only confined bound states of color-singlet quark-antiquark (meson) and quark-quark (baryon) pairs exist.Comment: 22 pages, 6 figure

    Extension of holomorphic functions and cohomology classes from non reduced analytic subvarieties

    Full text link
    The goal of this survey is to describe some recent results concerning the L 2 extension of holomorphic sections or cohomology classes with values in vector bundles satisfying weak semi-positivity properties. The results presented here are generalized versions of the Ohsawa-Takegoshi extension theorem, and borrow many techniques from the long series of papers by T. Ohsawa. The recent achievement that we want to point out is that the surjectivity property holds true for restriction morphisms to non necessarily reduced subvarieties, provided these are defined as zero varieties of multiplier ideal sheaves. The new idea involved to approach the existence problem is to make use of L 2 approximation in the Bochner-Kodaira technique. The extension results hold under curvature conditions that look pretty optimal. However, a major unsolved problem is to obtain natural (and hopefully best possible) L 2 estimates for the extension in the case of non reduced subvarieties -- the case when Y has singularities or several irreducible components is also a substantial issue.Comment: arXiv admin note: text overlap with arXiv:1703.00292, arXiv:1510.0523

    Local maximum points of explicitly quasiconvex functions

    Get PDF
    This work concerns generalized convex real-valued functions defined on a nonempty convex subset of a real topological linear space. Its aim is twofold: first, to show that any local maximum point of an explicitly quasiconvex function is a global minimum point whenever it belongs to the intrinsic core of the function’s domain and second, to characterize strictly convex normed spaces by applying this property for a particular class of convex functions

    Distributed Memory, GPU Accelerated Fock Construction for Hybrid, Gaussian Basis Density Functional Theory

    Full text link
    With the growing reliance of modern supercomputers on accelerator-based architectures such a GPUs, the development and optimization of electronic structure methods to exploit these massively parallel resources has become a recent priority. While significant strides have been made in the development of GPU accelerated, distributed memory algorithms for many-body (e.g. coupled-cluster) and spectral single-body (e.g. planewave, real-space and finite-element density functional theory [DFT]), the vast majority of GPU-accelerated Gaussian atomic orbital methods have focused on shared memory systems with only a handful of examples pursuing massive parallelism on distributed memory GPU architectures. In the present work, we present a set of distributed memory algorithms for the evaluation of the Coulomb and exact-exchange matrices for hybrid Kohn-Sham DFT with Gaussian basis sets via direct density-fitted (DF-J-Engine) and seminumerical (sn-K) methods, respectively. The absolute performance and strong scalability of the developed methods are demonstrated on systems ranging from a few hundred to over one thousand atoms using up to 128 NVIDIA A100 GPUs on the Perlmutter supercomputer.Comment: 45 pages, 9 figure

    Use of Plasmodium falciparum culture-adapted field isolates for in vitro exflagellation-blocking assay

    Get PDF
    International audienceA major requirement for malaria elimination is the development of transmission-blocking interventions. In vitro transmission-blocking bioassays currently mostly rely on the use of very few Plasmodium falciparum reference laboratory strains isolated decades ago. To fill a piece of the gap between laboratory experimental models and natural systems, the purpose of this work was to determine if culture-adapted field isolates of P. falciparum are suitable for in vitro transmission-blocking bioassays targeting functional maturity of male gametocytes: exflagellation. Plasmodium falciparum isolates were adapted to in vitro culture before being used for in vitro gametocyte production. Maturation was assessed by microscopic observation of gametocyte morphology over time of culture and the functional viability of male gametocytes was assessed by microscopic counting of exflagellating gametocytes. Suitability for in vitro exflagellation-blocking bioassays was determined using dihydroartemisinin and methylene blue. In vitro gametocyte production was achieved using two isolates from French Guiana and two isolates from Cambodia. Functional maturity of male gametocytes was assessed by exflagellation observations and all four isolates could be used in exflagellation-blocking bioassays with adequate response to methylene blue and dihydroartemisinin. This work shows that in vitro culture-adapted P. falciparum field isolates of different genetic background, from South America and Southeast Asia, can successfully be used for bioassays targeting the male gametocyte to gamete transition, exflagellation

    Endometrial stromal cells of women with recurrent miscarriage fail to discriminate between high- and low-quality human embryos

    Get PDF
    Background The aetiology of recurrent miscarriage (RM) remains largely unexplained. Women with RM have a shorter time to pregnancy interval than normally fertile women, which may be due to more frequent implantation of non-viable embryos. We hypothesized that human endometrial stromal cells (H-EnSCs) of women with RM discriminate less effectively between high-and low-quality human embryos and migrate more readily towards trophoblast spheroids than H-EnSCs of normally fertile women. Methodology/Principal Findings Monolayers of decidualized H-EnSCs were generated from endometrial biopsies of 6 women with RM and 6 fertile controls. Cell-free migration zones were created and the effect of the presence of a high-quality (day 5 blastocyst, n = 13), a low-quality (day 5 blastocyst with three pronuclei or underdeveloped embryo, n = 12) or AC-1M88 trophoblast cell line spheroid on H-ESC migratory activity was analyzed after 18 hours. In the absence of a spheroid or embryo, migration of H-EnSCs from fertile or RM women was similar. In the presence of a low-quality embryo in the zone, the migration of H-EnSCs of control women was inhibited compared to the basal migration in the absence of an embryo (P<0.05) and compared to the migration in the presence of high-quality embryo (p<0.01). Interestingly, the migratory response H-EnSCs of women with RM did not differ between high- and low-quality embryos. Furthermore, in the presence of a spheroid their migration was enhanced compared to the H-EnSCs of controls (p<0.001). Conclusions H-EnSCs of fertile women discriminate between high- and low-quality embryos whereas H-EnSCs of women with RM fail to do so. H-EnSCs of RM women have a higher migratory response to trophoblast spheroids. Future studies will focus on the mechanisms by which low-quality embryos inhibit the migration of H-EnSCs and how this is deregulated in women with RM

    Section Extension from Hyperbolic Geometry of Punctured Disk and Holomorphic Family of Flat Bundles

    Full text link
    The construction of sections of bundles with prescribed jet values plays a fundamental role in problems of algebraic and complex geometry. When the jet values are prescribed on a positive dimensional subvariety, it is handled by theorems of Ohsawa-Takegoshi type which give extension of line bundle valued square-integrable top-degree holomorphic forms from the fiber at the origin of a family of complex manifolds over the open unit 1-disk when the curvature of the metric of line bundle is semipositive. We prove here an extension result when the curvature of the line bundle is only semipositive on each fiber with negativity on the total space assumed bounded from below and the connection of the metric locally bounded, if a square-integrable extension is known to be possible over a double point at the origin. It is a Hensel-lemma-type result analogous to Artin's application of the generalized implicit function theorem to the theory of obstruction in deformation theory. The motivation is the need in the abundance conjecture to construct pluricanonical sections from flatly twisted pluricanonical sections. We also give here a new approach to the original theorem of Ohsawa-Takegoshi by using the hyperbolic geometry of the punctured open unit 1-disk to reduce the original theorem of Ohsawa-Takegoshi to a simple application of the standard method of constructing holomorphic functions by solving the d-bar equation with cut-off functions and additional blowup weight functions

    Analysis of a low-cost EEG monitoring system and dry electrodes toward clinical use in the neonatal ICU

    Get PDF
    Electroencephalography (EEG) is an important clinical tool for monitoring neurological health. However, the required equipment, expertise, and patient preparation inhibits its use outside of tertiary care. Non-experts struggle to obtain high-quality EEG due to its low amplitude and artefact susceptibility. Wet electrodes are currently used, which require abrasive/conductive gels to reduce skin-electrode impedance. Advances in dry electrodes, which do not require gels, have simplified this process. However, the assessment of dry electrodes on neonates is limited due to health and safety barriers. This study presents a simulation framework for assessing the quality of EEG systems using a neonatal EEG database, without the use of human participants. The framework is used to evaluate a low-cost EEG acquisition system and compare performance of wet and dry (Micro Transdermal Interface Platforms (MicroTIPs), g.tec-g.SAHARA) electrodes using accurately acquired impedance models. A separate experiment assessing the electrodes on adult participants was conducted to verify the simulation framework’s efficacy. Dry electrodes have higher impedance than wet electrodes, causing a reduction in signal quality. However, MicroTIPs perform comparably to wet electrodes at the frontal region and g.tec-g.SAHARA performs well at the occipital region. Using the simulation framework, a 25dB signal-to-noise ratio (SNR) was obtained for the low-cost EEG system. The tests on adults closely matched the simulated results

    Hormonal Signal Amplification Mediates Environmental Conditions during Development and Controls an Irreversible Commitment to Adulthood

    Get PDF
    Many animals can choose between different developmental fates to maximize fitness. Despite the complexity of environmental cues and life history, different developmental fates are executed in a robust fashion. The nematode Caenorhabditis elegans serves as a powerful model to examine this phenomenon because it can adopt one of two developmental fates (adulthood or diapause) depending on environmental conditions. The steroid hormone dafachronic acid (DA) directs development to adulthood by regulating the transcriptional activity of the nuclear hormone receptor DAF-12. The known role of DA suggests that it may be the molecular mediator of environmental condition effects on the developmental fate decision, although the mechanism is yet unknown. We used a combination of physiological and molecular biology techniques to demonstrate that commitment to reproductive adult development occurs when DA levels, produced in the neuroendocrine XXX cells, exceed a threshold. Furthermore, imaging and cell ablation experiments demonstrate that the XXX cells act as a source of DA, which, upon commitment to adult development, is amplified and propagated in the epidermis in a DAF-12 dependent manner. This positive feedback loop increases DA levels and drives adult programs in the gonad and epidermis, thus conferring the irreversibility of the decision. We show that the positive feedback loop canalizes development by ensuring that sufficient amounts of DA are dispersed throughout the body and serves as a robust fate-locking mechanism to enforce an organism-wide binary decision, despite noisy and complex environmental cues. These mechanisms are not only relevant to C. elegans but may be extended to other hormonal-based decision-making mechanisms in insects and mammals

    A first estimate of triply heavy baryon masses from the pNRQCD perturbative static potential

    Get PDF
    Within pNRQCD we compute the masses of spin-averaged triply heavy baryons using the now-available NNLO pNRQCD potentials and three-body variational approach. We focus in particular on the role of the purely three-body interaction in perturbation theory. This we find to be reasonably small and of the order 25 MeV Our prediction for the Omega_ccc baryon mass is 4900(250) in keeping with other approaches. We propose to search for this hitherto unobserved state at B factories by examining the end point of the recoil spectrum against triple charm.Comment: 18 figures, 21 page
    • …
    corecore